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Abstract
Verbal responses are a convenient and naturalistic way for participants to provide data in psychological experiments
(Salzinger, The Journal of General Psychology, 61(1),65–94:1959). However, audio recordings of verbal responses typically
require additional processing, such as transcribing the recordings into text, as compared with other behavioral response
modalities (e.g., typed responses, button presses, etc.). Further, the transcription process is often tedious and time-intensive,
requiring human listeners to manually examine each moment of recorded speech. Here we evaluate the performance of
a state-of-the-art speech recognition algorithm (Halpern et al., 2016) in transcribing audio data into text during a list-
learning experiment. We compare transcripts made by human annotators to the computer-generated transcripts. Both sets
of transcripts matched to a high degree and exhibited similar statistical properties, in terms of the participants’ recall
performance and recall dynamics that the transcripts captured. This proof-of-concept study suggests that speech-to-text
engines could provide a cheap, reliable, and rapid means of automatically transcribing speech data in psychological
experiments. Further, our findings open the door for verbal response experiments that scale to thousands of participants
(e.g., administered online), as well as a new generation of experiments that decode speech on the fly and adapt experimental
parameters based on participants’ prior responses.
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Introduction

Speech-to-text engines became popular in the 1990s
(Kurzweil et al., 1990) when the performance of speech
recognition algorithms (primarily based on Hidden Markov
Models; Rabiner (1989)) reached sufficient levels to
provide plausible, though still often inaccurate, transcripts
(Bamberg et al., 1990). Recent advances in deep learning
have ushered in a new era of substantially more accurate
speech recognition (Hinton et al., 2012). Today, speech-
to-text engines are ubiquitous, and are embedded into
applications running on myriad devices ranging from
phones to watches to thermostats to cars and beyond.

While automated speech decoding is now widespread
in mainstream society, the technology has not yet been
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widely adopted by the psychological research community
to facilitate analyses of verbal responses. However, speech
decoding has the potential to save researchers an enormous
amount of time when analyzing verbal response data,
and to enable new experimental designs that adapt
based on parameters derived from decoded speech data.
Further, whatever their current limitations, as speech-to-text
algorithms continue to mature, their utility in psychological
research should improve as well.

We sought to explore the feasibility of embedding a mod-
ern speech-to-text translation engine into a psychological
experiment that relies on verbal responses as its primary
data source. As a proof of concept, we had participants study
and verbally recall a series of random word lists. We had
human annotators manually transcribe the recorded audio
data (UPenn Computational Memory Lab, 2015), and we
also transcribed the data automatically using the Google
Cloud Speech API (Halpern et al., 2016). We then carried
out a series of analyses to compare the human-generated and
computer-generated transcripts.

Overall, we found that the human-generated and
computer-generated transcripts matched to a high degree.
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Our main interest was in assessing the extent to which
the computer-generated transcripts recovered (with high
fidelity, treating the human-generated transcripts as the
“ground truth”) the major patterns in free recall dynam-
ics that have been well reported in the literature (Murdock
1962; Kahana 1996, 2012, 2017; Manning et al. 2015).
We also identified points of disagreement between the two
transcription methods, particularly in how they handled
non-recall vocalizations. Our results suggest that automated
speech-to-text transcription tools are mature enough to pro-
vide (within limits) a viable alternative to human anno-
tation. This provides a potential means of carrying out
verbal response experiments on thousands of participants
on online platforms such as Amazon’s Mechanical Turk
(Crump et al., 2013). Furthermore, the possibility of incor-
porating this technology into experiments that adapt on the
fly according to prior verbal responses (where rapid ongo-
ing manual transcription would be infeasible) is particularly
exciting.

Methods

Participants

Thirty Dartmouth undergraduate students (22 female, 8
male, aged 18–21) participated in our study. All participants
had (by self-report) normal or corrected-to-normal vision,
reading, memory, and attentional abilities. Each participant
gave written, informed consent to volunteer for our study.
They received course credit for their participation. Our
experimental protocol was approved by the Committee for
the Protection of Human Subjects at Dartmouth College.

Materials

We collected data in a sound-attenuated testing room,
using a 27-inch 2016 iMac desktop computer. All audio
was recorded using the iMac’s built-in microphone. The
experiment was implemented in jsPsych (de Leeuw, 2015)
and psiTurk (Gureckis et al., 2015), along with custom code
for sending audio data to the Google Cloud Speech API.

Our stimulus set comprised a pool of 256 words chosen
from an online repository of themed word lists (Col,
2017). To create the word pool, we (manually) chose 8,
12, 16, or 20 common words from each of 15 semantic
categories: body parts, building-related, cities, clothing,
countries, flowers, fruits, insects, instruments, kitchen-
related, mammals, states, tools, trees, and vegetables.

Our experiment code and data may be downloaded
here. We also created an open-source Python toolbox for
analyzing and plotting free recall data, and for automatically
transcribing audio data (Heusser et al., 2017).

Experimental paradigm

Each participant studied a total of eight lists comprising
16 words each (128 words total). The lists were structured
such that each contained four exemplars from each of four
non-overlapping (but otherwise randomly selected from the
pool) semantic categories, and each word appeared in (at
most) one list. The specific set of 128 to-be-studied words
were chosen anew for each participant, and the lists were
generated randomly (with the words on each list shuffled
randomly) for each participant. All text was displayed in
black Courier New font, centered vertically and horizontally
on a white background, and each letter was sized to occupy
5% of the screen width.

During each experimental trial (Fig. 1), the participant
studied and recalled words from a single 16-word list. Each
trial began with 2 s of blank white screen, followed by a
2-s presentation of the first word on the list, followed by
two more seconds of blank white screen. Each subsequent
word was presented for 2 s, with a 2-s inter-stimulus interval
(blank screen) before the next word’s presentation. Two
seconds after the last word was cleared from the screen, a
red microphone icon appeared in the center of the screen,
which prompted the participant to verbally recall as many
words as they were able, from the just-presented list. The
participant was given 60 s to recall the words “in the
order they [came] to mind.” Participants were instructed
(at the beginning of the experiment) to speak “slowly
and clearly” in order to facilitate analyses of their verbal
response data. After 60 s, the microphone icon disappeared,
the trial concluded, and the participant was given the
opportunity to take a brief break before initiating the next
trial.

Speech-to-text transcription

Each participant contributed a total of eight 60-s recordings
of their verbal recalls of the studied word lists (one record-
ing per list). We transcribed each recall recording into text
manually using human transcribers (i.e., human-generated)
and automatically using the Google Cloud Speech API (i.e.,
computer-generated).

Time (s)

. . .

2 4 6 66 126

Fig. 1 Experimental paradigm. The timeline displays the sequence of
events during a single experimental trial, during which the participant
studies and recalls words from a single list

https://github.com/ContextLab/autoFR
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Human-generated transcripts

Two co-authors of this paper (PCF and CEF) manually
transcribed the audio data using a transcription software
tool, Penn TotalRecall (UPenn Computational Memory Lab,
2015). The transcribers listened to each trial’s audio file
in turn, played back at 1x speed, pausing or repeating
playback as often as needed for them to be confident in their
transcripts. Using the full 256-itemword pool as a reference,
any clear mispronunciations (e.g., “marimbo” instead of
“marimba”) or plurality errors (e.g., “hips” instead of “hip”)
were corrected to match the words in the word pool. In
addition, any utterances that were judged by the transcribers
to be non-recall vocalizations (e.g., “um,” “wait, let me
think...,” etc.) were excluded from the transcript. These
transcription decisions (to make pronunciation and plurality
corrections, and to exclude non-recall vocalizations) were
intended to highlight aspects of speech-to-text transcribing
that human listeners might be especially well suited to,
relative to automated methods.

Computer-generated transcripts

We used the Google Cloud Speech API to produce a
computer-generated text transcript of each participant’s
verbal responses. A total of 240 audio files, totaling four
hours of recordings, were transcribed (eight 1-min recor-
dings per participant, for each of the 30 participants). We
passed the 256-item word pool to the automatic transcriber
as a speech context, which provides “hints” to the speech
recognizer about which words to expect. Note that we did
not pass any information about which specific words were
reflected in any specific audio file, and only half of the
total word pool was presented to any given participant.
The speech recognizer returned, for each audio file, a list
of automatically transcribed words and vocalization onset
times. In addition, for each decoded utterance, the speech
recognizer returned a confidence rating ranging from 0
(not confident) to 1 (highly confident); these confidence
ratings roughly correspond to the estimated probability that
the given word label matched the given speech utterance.
The implementation details of the Google Cloud Speech
API are proprietary, but the API is made publicly available
here.

Results

We sought to evaluate the transcription accuracy of a
modern speech-to-text engine applied to recordings of
verbal responses from a list-learning experiment. We used
the annotations of human transcribers as a benchmark.
We carried out a preliminary analysis to assess the degree

of absolute agreement between the human-generated and
computer-generated transcripts. We then carried out a series
of post hoc analyses to evaluate how well the computer-
generated transcripts recovered the detailed recall dynamics
(Kahana 2012, 2017; Manning et al. 2015) reflected in the
human-generated transcripts.

Transcription accuracy

An accurate computer-generated transcript should satisfy
three basic criteria. First, it should have a high hit
rate, in that the computer-generated transcript should
contain each of the words also contained in the human-
generated transcript. We defined the hit rate as the average
(across lists) proportion of words in the human-generated
transcripts that were also contained in the computer-
generated transcripts. Second, it should have a low false
alarm rate, in that the computer-generated transcript should
not contain words that were not also contained in the
human-generated transcript. We defined the false alarm rate
as the average (across lists) proportion of words in the
computer-generated transcripts that were not contained in
the human-generated transcripts. Third, for words in both
sets of transcripts, the speech onset times should match
well.

Because the speech-to-text engine we evaluated is
probabilistic, each outputted response in the computer-
generated transcripts is associated with a confidence
rating. For this analysis, we used the receiver operating
characteristic (ROC) to evaluate how the hit rate and false
alarm rate varied as a function of the speech-to-text engine’s
confidence ratings (Fig. 2; area under the ROC: 0.907).
Our analysis revealed that the human-generated transcripts
matched the computer-generated transcripts well, in terms
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Fig. 2 Receiver operating characteristic (ROC) curve. False alarm rate
and hit rate as a function of the speech-to-text engine’s confidence
ratings (evaluated on the interval [0, 1] in increments of 0.1). The
ROC curve reflects an average across a total of 240 lists studied by
30 participants. Error ellipses denote 95% confidence intervals (across
subjects)

https://cloud.google.com/speech/
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of the set of words each contained. This finding, that the two
sets of transcripts matched well, indicates that the verbal
responses transcribed by the speech-to-text engine were an
accurate reflection of what the participants actually said
(as judged by human observers). Note that in subsequent
analyses we ignored the speech-to-text engine’s confidence
ratings (i.e., we included every transcribed word, regardless
of rated confidence, in our analyses below).

In addition to evaluating the degree of match between
the words identified in the human-generated and computer-
generated transcripts, we also compared the speech onset
times of words that appeared in both transcripts. We first
correlated the onset times within list, whereby we obtained
a total of eight correlations for each participant (one per
list). The correlations on every list exceeded 0.99 (Fig. 3a).
We next correlated the manually and automatically tagged
onset times within subject, aggregating across all of the
lists they encountered. We designed this analysis to catch
potential failures of the speech-to-text engine to accurately
identify differences in speech onset times across lists.
Both sets of transcripts again displayed highly correlated
onset times; all correlations exceeded 0.995 (Fig. 3b).
Last, we correlated the manually and automatically tagged
onset times of all recalls, aggregated across all lists and
participants. We designed this analysis to catch potential
failures of the speech-to-text engine to accurately identify
differences in speech onset times across subjects. Again,
the two sets of onsets times matched closely (r =
0.99, p < 0.001; Fig. 3c). Taken together, these onset time
analyses indicate that the speech-to-text engine accurately
identified speech onset times as identified by human
annotators.

The above analyses show that, to a first approximation,
the human-generated and computer-generated transcripts
agreed well in terms of the words they contained and the
times at which those words were vocalized. We next sought
to evaluate the degree to which the computer-generated
transcripts captured the detailed recall dynamics reflected in
the human-generated transcripts.

Recall dynamics

Participants in our free-recall experiment studied and
recalled random word lists. In general, the free-recall
literature has characterized participants’ recall dynamics
along four dimensions (for review see Kahana (2012)).
First, given a just-studied random word list, which word do
participants tend to recall first? Second, in which order(s) do
participants transition from recalling one word to the next?
Third, which words do participants recall overall? And
fourth, what sorts of errors (recalls of words that they had
not studied) do participants make? We evaluated the degree
to which the computer-generated transcripts captured each
of these dimensions as compared with the human-generated
transcripts.

Probability of first recall

The probability of first recall curves in Fig. 4a display
the proportion of trials in which participants began their
recall sequences with words at each study position. In
other words, which words on the just-studied lists did
participants tend to recall first? The probability of first recall
curves derived from the human-generated and computer-
generated transcripts overlapped to a high degree. These
curves indicate that participants in this experiment exhibited
a strong primacy effect, whereby they most often began their
recall sequence by recalling the first word presented on the
just-studied list.

To better characterize the degree of match between the
human-generated and computer-generated transcripts, and
following our prior work (Manning et al., 2011), we defined
a primacy ratio as the average probability of initiating
recall with any of the first three studied words, divided
by the average probability of initiating recall with any
of the middle six studied words from the most recent
list. This yielded a pair of numbers for each participant;
the first described the strength of the primacy effect as
measured from the human-generated transcripts, and the
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Fig. 3 Speech onset times during recall. a Within-list correlations
between human-generated and computer-generated speech onset times
during recall. Each participant contributed data for eight lists. b

Within-subject correlations between human-generated and computer-
generated onset times. cOnset times for individual recalls, as identified
manually and automatically. Each recall appears as a single dot
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Fig. 4 Recall dynamics. a, b Initiating the recall sequence. a Prob-
ability of recalling each word first, as a function of its presentation
position. Participants most often began their recall sequences with the
first-presented word from the just-studied list. b The “primacy ratio”
(see text) reflects participants’ tendency to initiate recall with words
presented early (versus in the middle of the list). We assessed the
agreement between the strength of this primacy effect as measured
using the human-generated (manual) and computer-generated (auto-
matic) transcripts. Each dot reflects the average primacy ratios for one
participant. c–d Recall transitions. c The conditional probability of
recalling each word as a function of its presentation position relative to

the previously recalled word (lag). Participants often temporally clus-
ter their recalls by successively recalling words that were presented at
nearby positions on the list (Kahana, 1996). d We assessed the agree-
ment between the degree of temporal clustering as measured manually
and automatically. Each dot reflects the average temporal clustering
scores (see text) for one participant. e, f Overall recall probabilities.
e Probability of recalling each word as a function of its presentation
position. f We assessed the agreement between the average proportion
of words recalled as measured manually and automatically. Error rib-
bons in a, c, and e denote 95% confidence intervals (across subjects),
estimated via 5000 bootstrap iterations

second described the strength of the primacy effect as
measured from the computer-generated transcripts. These
two measures were highly correlated across participants
(r = 0.93, p < 0.001; Fig. 4b), reflecting the high degree
of agreement between the human-generated and computer-
generated transcripts.

Recall transition probabilities

Given that a participant has just recalled a word from the
just-studied list, which word are they likely to recall next?
The lag conditional response probability curves (Kahana,
1996) displayed in Fig. 4c reflect the conditional probability
of recalling each word on the just-studied list as a function
of its study position relative to the previously recalled word
(lag). The curves show that participants tend to successively
recall words that came from nearby study positions on
the studied lists, a phenomenon referred to as temporal
clustering.

Following (Polyn & Kahana, 2008), we defined a tem-
poral clustering score for each participant, reflecting their
average tendency to successively recall words that came
from nearby study positions. For each recall transition, we
create a distribution of the absolute values of the differences
(lags) between the study position of the just-recalled word

and the set of words that had not yet been recalled. We then
computed the percentile rank (in the distribution of absolute
lags) of the next word the participant recalled. When we
observed a tie, we assigned that recall the average percentile
rank of all similarly ranked potential recalls. We defined
the temporal clustering score as the average percentile rank
across all recalls, from all lists, from that participant (we
first averaged the ranks of recalls from each list, and then
averaged across lists). If the participant always recalled the
closest yet-to-be-recalled word, they would be assigned a
temporal clustering score of 1. If the participant recalled
the words in a random order (with respect to the words’
study positions) this would yield a temporal clustering
score of 0.5. We computed temporal clustering scores for
each participant using both the human-generated transcripts
and the computer-generated transcripts; the two transcripts
yielded highly similar temporal clustering scores (Fig. 4d;
r = 0.97, p < 0.001).

Overall recall probabilities

Prior work on free recall has established that participants
are more likely to remember words that they studied at the
beginning or end of a list, relative to middle words (these
are often referred to as the primacy effect and recency effect,
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respectively; Murdock (1962)). We plotted the proportion of
words that participants recalled as a function of their study
position and found that the human-generated and computer-
generated transcripts agreed well and exhibited similar
primacy and recency effects (Fig. 4e). We also considered
the overall proportion of studied words that participants
remembered, as measured using the human-generated and
computer-generated transcripts. The two types of transcripts
agreed well (Fig. 4f; r = 0.94, p < 0.001).

Taken together, the above analyses show that the
specific words and onset times identified in the human-
generated and computer-generated transcripts agreed well
in terms of identifying the specific sequences of words
participants remembered from the lists they studied, and
the precise timing of each utterance. We next turn to
a series of analyses aimed at characterizing the errors
participants made, as identified using the human-generated
and computer-generated transcripts.

Recall errors

We first examined prior list intrusion errors, whereby parti-
cipants mistakenly recalled a word from an earlier list in the
experiment, rather than from the most recently studied list.
Previous work has established that prior list intrusions are
made more often from recently studied lists (e.g., the list
before the most recent one) than from lists frommuch earlier
in the experiment (e.g., five lists back in the experiment; for

review see Kahana (2017)). Both the human-generated and
computer-generated transcripts reflected this pattern, and ag-
reed closely (Fig. 5a). For each participant, we also computed
the average proportion of prior list intrusions that involved
words from one list back, two lists back, and so on (up to six
lists back). We computed these proportions using the human-
generated and computer-generated transcripts and compared
the results (Fig. 5b–f). We found that the numbers of
prior list intrusions identified using both methods matched
reliably (one back: r = 0.88, p < 0.001; two back: r =
0.93, p < 0.001; three back: r = 1.00, p < 0.001, five
back: r = 0.56, p < 0.005; six back: r = 1.00, p < 0.001;
both manual and automatic transcripts yielded zero prior list
intrusions from any participant from four lists back).

In addition to prior list intrusions, participants occasion-
ally make extra-list intrusion errors by recalling words
that had never been presented. Whereas the human tran-
scribers intentionally filtered out non-recall vocalizations,
the speech-to-text software effectively treated all vocaliza-
tions as recalls. For example, a human transcriber would
treat the vocalization “the other two were also cities” as a
non-recall vocalization, whereas the speech-to-text engine
treats this as a series of six successive recalls. Similarly, a
human transcriber would treat the vocalization “marimba,
oh, did I already say harmonica?” as reflecting two recalls
(of ‘marimba’ and ‘harmonica’), whereas the speech-to-text
software labels the utterance as a series of seven succes-
sive recalls. In other words, whereas human transcribers
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Fig. 5 Prior list intrusions. a Average intrusion error rates for each list back (1-3, 5, and 6) as measured using the human-generated (blue) and
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easily identify instances of participants “thinking aloud,”
automated methods do not distinguish recall from non-recall
utterances.

Given this distinction between the manual and automatic
transcriptions, we expected that there would (artificially) be
a greater number of extra-list intrusions identified in the
computer-generated, versus human-generated, transcripts
(indeed, this pattern was reflected in our data; t (29) =
7.15, p < 0.001). However, although the computer-
generated transcripts overestimated the numbers of extra-
list intrusions, the numbers of extra-list intrusions identified
in the human-generated and computer-generated transcripts
were reliably correlated (r = 0.53, p < 0.005; Fig. 6).
This indicates that the computer-generated transcripts do
not accurately reflect the absolute proportions of extra-list
errors, but they do accurately reflect the relative proportions
of extra-list errors.

Discussion

To gain insight into the extent to which modern speech-
to-text engines might replace human annotators, we carried
out a series of analyses on verbal responses recorded dur-
ing a list-learning experiment. We found that the human-
generated and computer-generated transcripts were largely
in agreement. The computer-generated transcripts also accu-
rately reflected most of the detailed statistical patterns
that we identified in participants’ recall behaviors using
human-generated transcripts. The major point of disagree-
ment between the human- and computer-generated tran-
scripts concerned how errors were reflected in the two
types of transcripts. Whereas human annotators filtered
out non-recall vocalizations, the computer-generated tran-
scripts treated all vocalizations as recalls. This inflated
the number of extra-list intrusion errors present in the
computer-generated transcripts. Despite this, the computer-
generated transcripts still accurately reflected individual
variations in the relative numbers of errors generated by

r
p

Fig. 6 Extra-list intrusions. Each dot reflects the average proportion of
extra-list intrusions made by a single participant, as measured using the
human-generated (x-axis) and computer-generated (y-axis) transcripts

different participants. Overall, our results indicate that mod-
ern speech-to-text engines can accurately transcribe par-
ticipants’ verbal responses. To the extent to which direct
transcripts are sufficient for capturing the behavioral phe-
nomena of interest, our findings suggest that computer-
generated transcripts can be used to capture and characterize
verbal response patterns. This may carry substantial sav-
ings (of time and money) compared with human-generated
transcripts. When large amounts of response data are col-
lected (e.g., investigations into the effects of overt rehearsal
on free and serial recall; Rundus (1971), Tan and Ward
(2000), and Tan and Ward (2008)) these savings may be
particularly beneficial.

A note on our choice of speech-to-text engine

Our analyses in this manuscript leveraged a single speech-
to-text engine (Halpern et al., 2016). We chose the Google
Cloud Speech API due to its ease of use, the ability to
provide a “speech context” (which played an important
role in improving the transcription accuracy), the ability
to obtain confidence ratings for each transcribed utterance,
and the ability to automatically identify vocalization onset
times. We have intentionally avoided detailed comparisons
between this speech-to-text engine and the other promising
speech-to-text engines available today that may have other
advantages or disadvantages (e.g., Pocketsphinx; Huggins-
Daines et al. (2006)). Rather, the focus of our current
analyses is to provide a proof-of-concept example of
how modern speech-to-text engines can transcribe verbal
response data. Our results highlight the immediate promise
of existing speech-to-text technologies, and we expect that
the quality of computer-generated transcripts will improve
as the methods continue to mature.

Speech-to-text engines as a driver for scalable
online verbal response experiments

Amazon’s Mechanical Turk, launched in 2005, is an online
marketplace that enables individual requesters to post small
jobs that are carried out (usually in return for a small
payment) by workers throughout the world. Over the past
several years, psychological researchers and social scien-
tists have begun to use Mechanical Turk as a convenient
and low-cost platform for quickly collecting large amounts
of experimental data (Paolacci et al., 2010). Despite the
decreased level of control over the experimental envi-
ronment relative to in-laboratory experiments, Mechanical
Turk workers yield (for many, though not all, experiments)
high-quality behavioral data that are similarly reliable to
data collected in the laboratory (Paolacci et al., 2010;
Buhrmester et al., 2011; Crump et al., 2013). Recently,
developed tools like jsPsych (de Leeuw, 2015) and psiTurk
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(Gureckis et al., 2015) facilitate the transition of labo-
ratory experiments to the Mechanical Turk marketplace,
substantially lowering the barriers to entry for research
psychologists.

Our study suggests the feasibility of collecting verbal
response data through Mechanical Turk. Whereas verbal
responses are traditionally transcribed by human listeners
(an approach that cannot easily scale to thousands of hours
of recordings collected from thousands of participants via
Mechanical Turk), automatic parsing via speech-to-text
engines provides a potential avenue for quickly and cheaply
transcribing vast quantities of data.

One potential downside to automated speech-to-text
parsing is that these engines can be vulnerable to adversarial
attacks, whereby malicious users intentionally generate
recordings that the speech-to-text engine will reliably
transcribe incorrectly (e.g., Carlini and Wagner (2018)).
While we would not expect this to be a widespread
problem in typical online experimental settings, researchers
are also beginning to devise strategies for counteracting
adversarial examples (Madry et al., 2017). Nevertheless, the
potential existence of adversarial examples (which a human
observer would likely have transcribed correctly) should
be considered on an as-needed basis when applying these
methods to massive online experiments that cannot easily be
manually checked in detail.

Speech-to-text engines as a driver for adaptive
verbal response experiments

Adaptive tests and experiments can dramatically reduce the
time needed to assess knowledge and measure psychophys-
ical and neuropsychological parameters. For example, com-
puter adaptive testing is now widespread on standardized
tests including the Graduate Record Examination (van der
Linden & Glas, 2000), and the staircase method is com-
monly used to rapidly estimate participants’ psychophysical
thresholds (Cornsweet, 1962). Modern variants of this tech-
nique, such as Bayesian active learning, use adaptive exper-
iments to quickly map complex multivariate receptive fields
based on neural data (Park & Pillow, 2012). Over the past
several decades, researchers have also developed adaptive
psychological experiments that leverage real-time process-
ing of physiological signals, such as functional magnetic
resonance imaging (Cox et al., 1995; Cox & Jesmanowicz,
1999; Cohen, 2001; deCharms, 2008; deBettencourt et al.,
2015) and electroencephalography (e.g., Angelakis et al.
(2007)).

Adaptive experiments driven by vocal responses have
been limited, presumably because sufficiently accurate
speech-to-text engines have only recently been broadly
available. However, the computer-generated transcripts in
our study captured many of the key patterns in participants’

recall sequences. These transcripts may be generated on the
fly during an experiment, for use in adapting future experi-
mental trials (e.g., to optimize learning, more quickly con-
verge on an estimate of participants’ abilities or strategies,
etc.).

Conclusions

The above findings show that automatic speech-to-text
transcription, though imperfect, recovers many of the
fundamental behavioral phenomena in free recall data. Our
results provide a proof of concept that automatic speech-
to-text transcription is sufficiently accurate to serve as an
effective substitute for human annotators in list-learning
experiments. Additional study is needed to understand
how broadly the level of performance we observed might
generalize to other verbal response experiments, noisy
recording environments, etc. Nevertheless, as improved
speech-to-text algorithms are discovered and developed, we
expect this to alleviate the need for human annotators.
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